\(\newcommand{\abs}[1]{\left\lvert#1\right\rvert}\) \(\newcommand{\norm}[1]{\left\lVert#1\right\rVert}\) \(\newcommand{\inner}[1]{\left\langle#1\right\rangle}\) \(\DeclareMathOperator*{\argmin}{arg\,min}\) \(\DeclareMathOperator*{\argmax}{arg\,max}\) \(\DeclareMathOperator*{\E}{\mathbb{E}}\)

× This section is under development!

Perturbation bounds

Symmetric \(\Sigma, \widehat{\Sigma} \in \mathbb{R}^{p\times p}\) w/ descending \(\{\lambda\}_{i=1}^p\), \(\{\widehat{\lambda}\}_{i=1}^p\) and \(\{\mathrm{v}\}_{i=1}^p\), \(\{\widehat{\mathrm{v}}\}_{i=1}^p\):

Davis-Kahan Thm (1970):

\(\norm{\widehat{\mathrm{v}}_i - \mathrm{v}_i} \le \dfrac{\sqrt{2}\norm{\widehat{\Sigma} - \Sigma}}{\min\{|\widehat{\lambda}_{i-1} - \lambda_i|,|\lambda_i - \widehat{\lambda}_{i+1}|\}},\)

Weyl’s Thm:

\(|\widehat{\lambda}_i - \lambda_i| \le \norm{\widehat{\Sigma} - \Sigma}, \quad \forall i=1,\ldots,p.\)

Dual Weyl

Symmetric \(A, B \in \mathbb{R}^{p\times p}\), then \(\forall j = 1, . . . , p\),

\[\begin{Bmatrix} \lambda_j(A) & + & \lambda_p(B)\\ \lambda_{j+1}(A) & + & \lambda_{p-1}(B) \\ & \vdots & \\ \lambda_p(A) & + & \lambda_j(B) \end{Bmatrix} \le \lambda_j(A+B) \le \begin{Bmatrix} \lambda_j(A) & + & \lambda_1(B)\\ \lambda_{j-1}(A) & + & \lambda_2(B) \\ & \vdots & \\ \lambda_1(A) & + & \lambda_j(B) \end{Bmatrix}.\]

(From TAO 254A Note 3a) Weyl:

\[\lambda_{i+j-1}(A+B) \le \lambda_{i}(A) + \lambda_{j}(B), \quad i,j\ge 1, \; i+j-1\le n.\]

Ky Fan inequality

\(\lambda_{1}(A+B) + \cdots + \lambda_{k}(A+B) \le \lambda_{1}(A) + \cdots +\lambda_{k}(A) + \lambda_{1}(B) + \cdots +\lambda_{k}(B)\)

Eigenvalue stability inequality

\(\abs{\lambda_{i}(A+B) -\lambda_{i}(A)}\le \norm{B}_{op}\)

that is, the spectrum of \(A+B\) is close to that of \(A\) if \(\norm{B}_{op}\) is small.

Lindskii inequality

\(\lambda_{i_1}(A+B) + \cdots + \lambda_{i_k}(A+B) \le \lambda_{i_1}(A) + \cdots +\lambda_{i_k}(A) + \lambda_{1}(B) + \cdots +\lambda_{k}(B),\)

for all \(1\le i_1 \le \cdots i_k \le n.\)

Dual Lindskii inequality

\(\lambda_{i_1}(A+B) + \cdots + \lambda_{i_k}(A+B) \ge \lambda_{i_1}(A) + \cdots +\lambda_{i_k}(A) + \lambda_{n-k+1}(B) + \cdots +\lambda_{n}(B),\)

for all \(1\le i_1 \le \cdots i_k \le n.\)

Dual Weyl inequality

\(\lambda_{i+j-n}(A+B) \ge \lambda_{i}(A) + \lambda_{j}(B), \quad 1\le i, j, i+j-n \le n.\)

Cauchy’s Eigenvalue Interlacing

\(A \in \mathbb{R}^{n\times n}\) is symmetric, \(B \in \mathbb{R}^{m\times m},\; m< n\) is a principal submatrix of \(A\) (or a projection of \(A\) onto \(m\) coordinates). Then, their eigenvalues are interlaced,

\[\lambda_{i}(A) \ge \lambda_i(B) \ge \lambda_{i+n-m}(A), \quad i=1,\ldots,m.\]

E.g. if \(m=n-1\)

\[\lambda_{1}(A) \ge \lambda_1(B) \ge \ldots \ge \lambda_{n-1}(B) \ge \lambda_{n}(A).\]

Weilandt-Hoffmann inequality:

\[\sum_{i=1}^n \abs{\lambda_i(A+B) -\lambda_i(A)}^2 \le \norm{B}_F^2\]

Curvature lemma

\((\lambda_d - \lambda_{d+1}) \norm{\widehat{\Pi}_d - \Pi_d}_F^2 \le 2 \mathrm{Tr}(\Sigma(\Pi_d - \widehat{\Pi}_d))\)


~Random fact

For matrix \(\mathrm{M}\in\mathbb{R}^{n\times p}\) and a unit vector \(\mathrm{u}\in\mathbb{R}^{p}\):

\[\lambda_1(\mathrm{M'M}) \ge \norm{\mathrm{Mu}}_2^2 \ge \lambda_p(\mathrm{M'M})\]